Министерство Энергетики

Водород: энергия «чистого» будущего

Александр Новак
Заместитель председателя Правительства РФ

Области использования водорода

Водород, полученный с использованием низкоуглеродных технологий, может быть эффективным средством декарбонизации тех отраслей промышленности, которые в настоящее время потребляют большое количество угля или газа в качестве источника энергии, либо такой водород может стать вариантом замены уже используемого водорода на низкоуглеродный (например, в нефтепереработке и химической промышленности).
Несмотря на то, что сегодня водород используется в основном в промышленном производстве, этот химический элемент имеет значительный потенциал расширения областей применения.
В сфере электроэнергетики он может использоваться в качестве углеродно-­нейтрального топлива как для централизованной, так и для распределенной генерации, выступать средством накопления энергии и применяться в качестве вторичного энергоносителя, аккумулирующего энергию, которая производится на объектах возобновляемой энергетики.
Кроме того, использование водорода в смеси с метаном или в чистом виде в системе газоснабжения рассматривается в качестве направления декарбонизации децентрализованного теплоснабжения и ЖКХ.
Водород может применяться в различных видах транспорта – автомобилях, складском транспорте, поездах, авиатранспорте, судах – как в топливных элементах, так и в двигателях внутреннего сгорания.

Молекула водорода
Источник: vistapointe.net

Настоящее и будущее водородной энергетики

По оценкам экспертов, мировой спрос на чистый водород в настоящее время находится на уровне 75 млн тонн в год. При этом порядка 95 % потребления приходится на нефтеперерабатывающую и химическую промышленность, в основном самостоятельно обеспечивающих собственные потребности в водороде за счет его производства на специализированных установках непосредственно в месте потребления (так называемый кэптивный рынок). Еще около 42 млн тонн водорода используется в смеси с другими газами (в основном в виде синтез-газа) в качестве сырья или топлива при производстве тепловой и электрической энергии.
Для сравнения, в качестве энергоносителя в таких перспективных сферах как транспорт и энергетика в настоящее время потребляется менее 0,01 млн тонн в год. Столь незначительные объемы во многом связаны с сохраняющимися барьерами развития водородной энергетики: высокой стоимостью низкоуглеродного водорода, недостаточной готовностью технологий для его широкого применения, включая обеспечение безопасности всей производственной цепочки, дефицитом необходимой инфраструктуры для хранения и транспортировки водорода, а также рядом пробелов в нормативной правовой базе.
На сегодняшний день наиболее экономически выгодным является производство водорода из ископаемого сырья. По данным МЭА, в структуре мирового производства чистого водорода 75 % приходится на природный газ, 23 % – на уголь. При этом водород, производящийся из ископаемого сырья (в первую очередь, угля) обладает относительно высоким углеродным следом. Для снижения углеродного следа и дальнейшей декарбонизации отраслей возможно внедрение технологий производства водорода из ископаемого сырья с использованием систем улавливания и хранения углекислого газа, а также электролиза воды, в первую очередь, с помощью энергии объектов атомной, гидро-, ветряной и солнечной энергетики. Большие перспективы имеются у новых технологий низкоуглеродного производства водорода, в частности технологии пиролиза метана.
В настоящее время мировые эксперты не пришли к единому мнению о потенциальных объемах мирового рынка водорода. Диапазон оценок глобального спроса на водород к 2050 году колеблется в пределах от нескольких десятков до почти 700 млн тонн в год. Между собой конкурируют два возможных сценария дальнейшего развития водородной энергетики: формирование глобального рынка с крупнотоннажными перевозками энергоресурса от центров производства к центрам потребления, по аналогии с рынками нефти и сжиженного природного газа, или же локальное сосредоточение производства и потребления водорода в рамках отдельных стран или небольших регионов.
По какому сценарию пойдет дальнейшее развитие водородной энергетики, будет во многом зависеть от темпов декарбонизации мировой экономики и скорости освоения и развития водородных технологий. Способствовать появлению глобального рынка водорода будет спрос со стороны стран, ратифицировавших Парижское климатическое соглашение, но не имеющих достаточных собственных ресурсов для производства низкоуглеродной энергии и топлива для декарбонизации секторов экономики. Еще одним немаловажным стимулом, способным увеличить объемы производства и потребления водорода, является развитие технологий для его использования в качестве средства накопления энергии на установках ВИЭ и расширение сфер применения водородных топливных элементов.

Развитие водородной энергетики в России

В 2019 году Россия присоединилась к Парижскому соглашению по климату, чем поддержала международные усилия по противодействию изменению климата, охране окружающей среды и рациональному природопользованию.
Уже сегодня страна является одним из гарантов глобальной энергетической безопасности, обеспечивая природным газом – наиболее экологическим чистым ископаемым источником энергии – европейских и восточных партнеров.
Одна из ключевых задач, закрепленных в Энергетической стратегии Российской Федерации на период до 2035 года, – на основе имеющихся компетенций в сфере традиционной энергетики развивать потенциал России в новых перспективных направлениях, формируя собственную научную и техническую базу энергетики будущего и наращивая экспорт высокотехнологичных решений и несырьевой продукции. В этой связи развитие водородной энергетики полностью отвечает поставленным задачам.

Одним из первых самолетов на водороде стал советский ТУ-155
Источник: jetphotos.com

Несмотря на то, что отечественные топливно-­энергетический и электроэнергетические балансы сегодня являются одними из самых «зеленых» в мире, Россия продолжает дальнейшую работу над развитием альтернативных источников, в том числе над расширением использования водорода на внутреннем рынке.
В качестве наиболее перспективных направлений в настоящее время рассматривается применение водорода в качестве энергоносителя на транспорте, в энергетике и промышленности. Помимо этого, водород потенциально может использоваться для энергоснабжения потребителей энергетически изолированных районов и территорий с особыми требованиями экологичности, например, в Арктике.
Наша страна обладает важными конкурентными преимуществами: значительным энергетическим потенциалом и ресурсной базой, генерирующими мощностями, географической близостью к потенциальным потребителям водорода, научным заделом в сфере производства, транспортировки и хранения водорода, а также действующей транспортной инфраструктурой.
Для реализации имеющегося в стране потенциала в октябре 2020 года правительством была утверждена дорожная карта по развитию водородной энергетики в Российской Федерации до 2024 года, задача которой – расширение производства и потребления водорода, а также вхождение страны в число мировых лидеров по его производству и экспорту. В настоящее время подготовлен проект Концепции развития водородной энергетики, в котором сформулированы приоритеты развития водородной энергетики с определением краткосрочных, среднесрочных и долгосрочных целей.
Одной из первостепенных задач, на которой предстоит сосредоточиться, должна стать разработка конкурентоспособных технологий производства водорода как из ископаемого сырья, в первую очередь природного газа, так и электролизом воды на базе АЭС и ВИЭ. При этом, нужно продолжать работу по развитию в стране возобновляемой энергетики, уделяя особое внимание снижению стоимости, получаемой от солнечных и ветровых станций электроэнергии, для организации экономически эффективного производства водорода с минимальным углеродным следом.

Использование водорода на НПЗ в Германии
Источник: pressebox.de

Отдельное внимание стоит обратить на разработку технологий эффективной и безопасной транспортировки и хранения водорода, не получивших в настоящее время достаточного развития для широкомасштабного применения в промышленности. Для достижения эффективных результатов потребуется развитие отечественной научной школы и профессиональных кадровых компетенций, создание инжиниринговых центров и полигонов для отработки пилотных проектов, а также разработка соответствующей нормативной базы по стандартизации и в сфере безопасности по всей цепочке жизненного цикла от производства до применения водородных энергоносителей. Для вывода на рынок новых решений необходимо будет обеспечить и законодательную поддержку водородной энергетики.
Развитие всех этих направлений предусмотрено в рамках дорожной карты по развитию водородной энергетики. К 2024 году запланирована реализация ряда пилотных проектов в области водородной энергетики, направленных, в том числе, на создание и применение пилотных установок производства водорода без выбросов углекислого газа, разработку, изготовление и проведение испытаний газовых турбин на метано-­водородном топливе, создание опытного образца железнодорожного транспорта на водороде и опытных полигонов низкоуглеродного производства водорода на объектах переработки углеводородного сырья или добычи природного газа, производство водорода с использованием атомных электрических станций.

Международное сотрудничество

В активной стадии находится взаимодействие с иностранными партнерами в сфере водородной энергетики. В первую очередь, ставка будет делаться на страны Европейского союза и Азиатско-­Тихоокеанского региона, в которых уже приняты долгосрочные программы развития водородной энергетики.
В настоящий момент наиболее интенсивный диалог ведется с немецкой и японской сторонами. В рамках Российско-­Японского Консультационного энергетического совета достигнуты принципиальные договоренности о взаимодействии в рамках двусторонней рабочей группы. Отдельное внимание уделяется перспективам сотрудничества по водородному направлению между российскими компаниями и японскими органами власти.
В частности, одна из крупнейших энергетических компаний России – «Росатом» – в рамках подписанного в 2019 году соглашения о сотрудничестве совместно с Агентством по природным ресурсам и энергетике Японии разрабатывает технико-­экономическое обоснование (ТЭО) проекта поставок водорода из России в Японию. В случае его успеха можно будет говорить о реализации масштабного проекта организации глобальной цепочки поставок водорода, а в будущем – о формировании уникального низкоуглеродного водородного кластера, цена на водород в котором будет интересна для потенциальных партнеров. Еще одним перспективным направлением сотрудничества двух сторон может стать обмен опытом в части развития технологий.
Что касается российско-­германского сотрудничества, в высокой степени готовности находится подписание совместной российско-­германской декларации о намерениях между Минэнерго России и Федеральным Министерством экономики и энергетики ФРГ о сотрудничестве в сфере устойчивой энергетики. Предусматривается создание рабочей группы высокого уровня по устойчивой энергетике под председательством министров энергетики России и Германии и входящей в ее состав подгруппы по сотрудничеству в сфере водородной энергетики.

Южнокорейская Hyundai активно развивает производство машин на водороде и заправочные станции для них
Источник: hyundai.com

Подписание Декларации станет основой для расширения взаимовыгодного энергетического сотрудничества между нашими странами, обмена опытом в области изучения технологии производства, хранения, использования и транспортировки водорода для реализации совместных российско-­германских проектов в данной сфере, а также будет способствовать использованию и совершенствованию наилучших доступных технологий и практик.
На сегодняшний день энергетическая политика Российской Федерации полностью отражает ключевые мировые тренды. Наша страна на протяжении многих лет является одним из лидеров на глобальном рынке углеводородов, при этом параллельно, не теряя, а наращивая компетенции в традиционных направлениях ТЭК, Россия намерена вой­ти в число мировых лидеров в сфере производства и экспорта водорода. Это окажет мультипликативный эффект на развитие смежных отраслей и будет способствовать достижению глобальной цели низкоуглеродного развития мировой экономики.